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Unbalance response analysis is essential in the dynamic analysis of rotor–bearing
systems. However, there still remains a problem in the aspect of computational efficiency
for unbalance response analysis of large rotor–bearing systems. Gyroscopic terms and local
bearing parameters in rotor–bearing systems often make matters worse in unbalance
response computation, due to the complicated dynamic properties such as rotational speed
dependency and/or anisotropy. In the present paper an efficient method is proposed for
unbalance responses of multi-span rotor–bearing systems. An improved substructure
synthesis scheme is introduced which makes it possible to compute unbalance responses
of the system by coupling unbalance responses of substructures and is easy to manage. The
proposed method includes also a scheme to deal with gyroscopic terms and local, coupling
or bearing parameters easily. The proposed method causes no errors, even though the
computation time is drastically reduced. The proposed method is demonstrated and
validated through several test examples.
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1. INTRODUCTION

The finite element method (FEM) has played an important role in the design or analysis
of rotor–bearing systems [1–7]. In particular, unbalance response analysis by FEM is
essential in the dynamic analysis of rotor–bearing systems because of its usefulness in
vibration diagnosis as well as balancing or identification of parameters involved in rotor
bearing systems [7–10]. However, there still remain some difficulties in the computational
aspect of unbalance response analysis due to the fact that the classical modal analysis
scheme is inconvenient for unbalance response analysis. The presence of local joint
elements (e.g., bearings, couplings and seals in rotor–bearing systems) often gives rise to
a difficulty in modal anlaysis of rotor–bearing systems, mainly due to the complicated
dynamic properties such as rotational speed dependency and/or anisotropy. In addition,
gyroscopic terms in rotor–bearing systems often make matters worse in unbalance response
computation because they appear as a rotational speed dependent, skew-symmetric matrix
in FEM. As a consequence, computation of unbalance responses for rotor–bearing systems
relies solely on the direct computation method, which is likely to be inefficient because it
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necessitates repetitive inversion of the full complex dynamic stiffness matrix at every
rotational speed of interest.

After Guyan [11] proposed a matrix reduction scheme for dynamic analysis of structural
dynamic systems, many kinds of matrix reduction schemes were suggested [12–15]. Among
these, the substructure synthesis method has attracted the attention of many investigators.
The fundamental idea of the substructure synthesis method is to divide the structure into
a few substructures, obtain the dynamic characteristics of the substructures, and then
combine the results to obtain the dynamic characteristics of the overall system. For the
combining process, various order reduction schemes were suggested. The component mode
synthesis method is the most prevelant among various substructure synthesis techniques.
In the case of rotating machinery, the component mode synthesis was introduced early and
proved useful [14, 15], but the procedure does not seem to be very easy to implement, in
addition to which the amount of computational error is uncertain. There still remains a
problem associated with quantifying computational errors resulting from substructure
synthesis techniques.

In the present paper, an efficient substructure synthesis method for unbalance response
analysis is proposed, so as to deal with large multi-span rotor–bearing systems. The
proposed method consists of two steps. First, a modal analysis scheme is introduced to
obtain unbalance response of a substructural rotor that is a part of the overall
rotor–bearing system but does not include any joint parameters. The use of complex
co-ordinates in the formulation makes it easy to handle the skew-symmetric property of
gyroscopic effects by decomposing the unbalance response formula of a substructural rotor
into two modal response formulae that are based on elementary self-adjoint eigenvalue
problems. Second, a substructure synthesis scheme is suggested to obtain unbalance
responses of the overall rotor–bearing system by incorporating the unbalance responses
of the substructures. Here an exact matrix condensation procedure is devised to reduce
the order of the system matrix down to the number of co-ordinates connected with local
joint elements, which is presumably much smaller than the total number of co-ordinates.
Unbalance responses can then be readily obtained by computation of the small, condensed
dynamic stiffness matrix with combined uses of the unbalance responses of substructural
rotors, already computed in the first step. The proposed method causes no errors, even
though the computational time is drastically reduced.

A numerical study is also conducted to validate the efficiency and applicability of the
proposed method. In the first numerical example, the proposed method is compared with
the direct inversion method. In the second example a realistic re-analysis problem is
considered; this is often met in the design stage of a rotor–bearing system. Finally, the
proposed method is applied to a rotor–bearing system for a two-spool aircraft engine. The
numerical study proves that the proposed method is very efficient and useful for the
unbalance response analysis of rotor–bearing systems.

2. UNBALANCE RESPONSE OF ROTOR–BEARING SYSTEM

2.1.      

In Figure 1 is illustrated a multi-span rotor–bearing system that has n substructural
rotors connecting each other with couplings and being supported in bearings. The equation
of motion for the ith rotor except couplings and bearings can be written, in a complex
co-ordinate form (see the Appendix) as

Mip̈i −jVGiṗi +Kipi =Fi , (1)
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where pi and Fi are the complex co-ordinate vector and the corresponding complex force
vector of the ith rotor, respectively. Mi , Gi and Ki are the mass, gyroscopic and stiffness
matrices of the ith rotor respectively. Equation (A10) in the Appendix leads the unbalance
response functions of the ith rotor to

Hi,ff = {Di,ff}−1 = {−V2(Mi −Gi )+Ki}−1 (2a)

Hi,bb = {Di,bb}−1 = {−V2(Mi +Gi )+Ki}−1 (2b)

Hi,bf =Hi,fb =0 (2c)

It will prove to be convenient to define the following co-ordinate transform relationship:

pc
i = Ti pi

mi ×1 mi ×Ni Ni ×1 (3)

where pc
i is a co-ordinate vector associated with local joint (connecting or supporting)

elements, such as bearings, couplings and so forth. Ti is a transform matrix provided for
extracting pc

i from the co-ordinate vector pi of the ith rotor.

2.2.      – 

Assume that the superscripts o, c and s denote the overall rotor–bearing system, the joint
system, and a subsidiary system that is identical to the overall rotor but does not include
the joint elements. Then the unbalance response function of the overall rotor–bearing
system can be defined by the inverse of dynamic stiffness matrix as given in equation (A9);
i.e.,

$Ho
ff

Ho
bf

Ho
fb

Ho
bb%=$Do

ff

Do
bf

Do
fb

Do
bb%

−1

, (4)

where the overall dynamic stiffness matrix can be decomposed as

$Do
ff

Do
bf

Do
fb

Do
bb%=$Ds

ff

0
0

Ds
bb%+$Dc

ff

Dc
bf

Dc
fb

Dc
bb%.

Here the first and second terms on the right side represent the dynamic stiffness matrix
of the subsidiary system and the joint system matrix that will be derived in the next section.
Equation (4) can be rewritten as

$Ho
ff

Ho
bf

Ho
fb

Ho
bb%=6I+$Hs

ff

0
0

Hs
bb%$Dc

ff

Dc
bf

Dc
fb

Dc
bb%7

−1

$Hs
ff

0
0

Hs
bb%. (5)

Figure 1. A conceptual system with multi-span rotors.
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The dynamic stiffness and unbalance response matrices of the subsidiary system can be
represented as

Ds
kk =diag {D1,kk , D2,kk , . . . , Dn,kk}

Hs
kk = {Ds

kk}−1, k= f, b. (6)

In the case of the direct computation method, equation (4) is often used, but equation (5)
is preferable for improving the computational efficiency. In general, there is a need of
matrix inversion for a 2N×2N complex matrix to gain unbalance response.

2.3.     

The joint dynamic stiffness matrices, Dc
kl , k, l= f, b, introduced in equations (4) and (5),

are apt to be sparse, so that the matrix can be condensed as

dc
kl =TmDc

klTT
m, k, l= f, b. (7)

Here dc
kl is a condensed matrix for the joint matrix, the size of which is m×m, m being

the degree of freedom of the co-ordinates connected with or supported in the joint elements

0s
n

i=1

mi1.
The co-ordinate transform matrix is defined using

pc = Tm p,

m×1 m×N N×1 (8)

where pc is a co-ordinate vector that includes only the co-ordinates related to joint
elements. Tm is composed of the transform matrices given in equation (3).

Tm =diag {T1 T2 · · · Tn}. (9)

Consequently, the condensed dynamic stiffness matrices in equation (7) can be easily
obtained from Dc

kl, k, l= f, b. Otherwise, the condensed dynamic stiffness matrices can be
constructed directly as follows:

dc
kl = s

m

a=1

s
m

b=1

dkl,abgabg
T
ab, (10)

where dkl,ab is the dynamic stiffness of a joint element between co-ordinates a and b and
gab is an m-dimensional vector, defined as

gaa = {0 0 · · · 0 1 0 · · · 0}T

ath
for a=1, 2, . . . , m,

gab = {0 0 · · · 0 1 0 · · · 0−1 0 · · · 0}T

ath bth
for a, b=1, 2, . . . , m, a$ b.

3. IMPROVEMENT OF UNBALANCE RESPONSE COMPUTATION ALGORITHM

3.1.      

Since Mi , Gi and Ki in equation (2) are all symmetric, the unbalance response formulae
of a substructural rotor can be expressed in a modal expansion form by using a classical
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modal analysis scheme. Application of the classical modal analysis scheme to Hi,ff in
equation (2a) can result in

Hi,ff = {Di,ff}−1 = s
N

k=1

ui,fkuT
i,fk

v2
i,fk −V2, (11)

where the eigenvalues and eigenvectors satisfy the following eigenvalue problem:

{−v2
i,fk (Mi −Gi )+Ki}ui,fk =0, k=1, 2, . . . , N. (12)

The eigenvectors can be normalized so as to satisfy

uT
i,fk (Mi −Gi )ui,fl = dkl , uT

i,fkKiui,fl =v2
i,fkdkl , k, l=1, 2, . . . , N, (13)

where dkl denotes the Kronecker delta. Similarly to equation (11), Hi,bb can be written as

Hi,bb = {Di,bb}−1 = s
N

k=1

ui,bkuT
i,bk

v2
i,bk −V2. (14)

The eigenvalues and eigenvectors involved in equation (13) satisfy the following eigenvalue
problem.

{−v2
i,bk (Mi +Gi )+Ki}ui,bk =0, k=1, 2, . . . , N. (15)

Here the eigenvectors can be normalized so as to satisfy

uT
i,bk (Mi +Gi )ui,bl = dkl , uT

i,bkKiui,bl =v2
i,bkdkl , k, l=1, 2, . . . , N. (16)

As a result, the unbalance response functions of a substructural rotor can be deduced from
equations (11) and (14), which are based upon elementary, self-adjoint eigenvalue
problems. It is noteworthy that the use of complex co-ordinates makes it possible to replace
the non-self-adjoint system due to the skew-symmetric nature of the gyroscopic matrix by
two equivalent self-adjoint systems.

3.2.      

Equation (5) gives

$Hs
ff

0
0

Hs
bb%−$Ho

ff

Ho
bf

Ho
fb

Ho
bb%=$Hs

ff

0
0

Hs
bb%$Dc

ff

Dc
bf
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fb
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bb%$Ho

ff

Ho
bf

Ho
fb

Ho
bb%. (17)

Since the joint matrix is sparse, substitution of equation (7) into equation (17) may yield

$Hs
ff

0
0

Hs
bb%−$Ho

ff

Ho
bf

Ho
fb

Ho
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ffmN

0
0

HsT
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ff
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bf
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Ho
bbmN%. (18)

Upon premultiplying equation (18) by diag {Tm , Tm},

$Ho
ffmN

Ho
bfmN

Ho
fbmN

Ho
bbmN%=6I+$Hs

ffmm

0
0

Hs
bbmm%$dc

ff

dc
bf

dc
fb

dc
bb%7

−1

$Hs
ffmN

0
0

Hs
bbmN%, (19)

where

Hk
;;mN =TmHk

;;, k= o, s,

Hs
;;mm =TmHs

;;TT
m =diag {T1H1;;TT

1 T2H2;;TT
2 · · · TnHn;;TT

n }.
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Figure 2. Numerical model 1: a system with n rotors connected by an identical coupling.

T 1

Specifications of a substructural rotor in numerical model 1

Shaft Length 1·2 m
Diameter 8·0 cm
Young’s modulus 2·0×1011 N/m
Density 8000 kg/m3

Number of finite elements 12 (equal length)

Disk Mass 20 kg
(two identical) Polar moment of inertia 0·163 kg m2

Diametral moment of inertia 0·085 kg m2

Location (distance from left) Nodes 6 and 8 (0·5, 0·7 m)

Bearings Location (distance from left) Nodes 1 and 13 (0, 1·2 m)
(two identical) Stiffness kyy 20 MN/m

kzz 25 MN/m
kyz −15 MN/m
kzy 10 MN/m

Damping cyy 60 000 Ns/m
czz 80 000 Ns/m
cyz −40 000 Ns/m
czy −40 000 Ns/m

Thus, substituting equation (19) into equation (18) may lead to the final equation for
unbalance response function as follows:

Ho
ff =Hs

ff − {Hs
ffmN}TPHs

ffmN, (20)

Ho
bf =−{Hs

bbmN}TQHs
ffmN, (21)

where

$PQ R
S%=$dc

ff

dc
bf

dc
fb

dc
bb%6I+$Hs

ffmm

0
0

Hs
bbmm%$dc

ff

dc
bf

dc
fb

dc
bb%7

−1

. (22)

Here P, Q, R and S are all m×m partitioned matrices. The backward components Ho
fb

and Ho
bb are omitted hereinafter because they do not affect the unbalance responses.

Equations (20) and (21) can be simplified as

Ho
ff (a, b)=Ha,ffdab − {TaHa,ff}TP(a, b)TbHb,ff , (23)

Ho
bf (a, b)=−{TaHa,bb}TQ(a, b)TbHb,ff , (24)

The notation (a, b) indicates a partitioned matrix of size, ma ×mb , to represent the
response of the ath rotor subjected to the input of the bth rotor. Equations (23) and (24)
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Figure 3. A comparison of the proposed and direct computation methods on time elapsed for one point
unbalance response computation. —q—, Direct method; —w—, proposed method.

Figure 4. Numerical model 2: a laboratory test model (dimensions in m).

are surely simple to solve, because the matrix required to be inverted becomes 2m×2m,
and is presumably small.

Generally, the complex unbalance vector can be represented by

WT = {WT
1 WT

2 · · · WT
n }, (25)

where Wi , i=1, 2, . . . , n, is the unbalance vector at the ith rotor. Equation (A9) yields
the unbalance responses as

pf =Ho
ffWV2, pb =Ho

bfWV2. (26)

4. NUMERICAL EXAMPLES AND DISCUSSION

4.1.   1
The present example deals with an artificial system with n-span rotors to investigate the

computational efficiency of the proposed method in comparison with the direct
computation method. Both the proposed method and the direct computation method are
implemented on a PC with Matlab [16]. The model, in which every substructural rotor is
assumed to be identical and serially connected to the neighboring rotor with a coupling,
is shown in Figure 2. Two bearings support each rotor. The detailed specifications of the
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T 2

Specifications of the rotor in numerical model 2

Shaft Length 1·2 m
Diameter 8·0 cm
Young’s modulus 2·0×1011 N/m
Density 8000 kg/m3

Number of finite elements 12 (equal length)

Disk Mass 20 kg
(three identical) Polar moment of inertia 0·163 kg m2

Diametral moment of inertia 0·085 kg m2

Location (distance from left) Nodes 5, 6 and 13 (0·4, 0·5, 1·2 m)

Bearing 1 Location (distance from left) Node 1 (0 m)
Load 29·42 kgf
L/D 0·5
C/R 2/1000
Viscosity 9·37 mPas

Bearing 2 Location (distance from left) Node 10 (0·9 m)
Load 78·84 kgf
L/D 0·5
C/R 2/1000
Viscosity 9·37 mPas

T 3

Specification of fluid film bearings used in numerical model 2

Bearing type Parameters

Two axial groove Oil groove angle=10°

Four tilting pad Tilting pad angle=80°
Preload factor=0
LBP type

Five tilting pad Tilting pad angle=60°
Preload factor=0
LBP type

substructural rotor is shown in Table 1. Every coupling is identical and is modelled as a
translation stiffness. The number of nodal points for a single rotor is taken to be 13, so
that the direct method requires inverse of a 26n×26n complex dynamic stiffness matrix
for unbalance response analysis, while the proposed method deals with a 3n×3n matrix
equation. In the direct method, the Gauss elimination method was adopted for inversion
of a matrix. Of course, both methods yield the same unbalance response.

In Figure 3 is shown a plot of the number of rotors (n) versus time elapsed in the
computation of one point unbalance response for two methods, the proposed and the
direct methods. From Figure 3 it is evident that the proposed method is far more efficient
than the direct method and can save more time as the number of degrees of freedom
becomes large. Although the proposed method necessitates solutions of eigenvalue
problems, no significant computational burden is caused because all the eigenvalue
problems are self-adjoint and required to be solved only once. The present example
confirms that the proposed method can significantly reduce the computation time without
resulting in any errors.



   499

4.2.   2
In the present example a typical re-analysis problem for a rotor–bearing model is

considered, as shown in Figure 4. The detail specifications of the rotor are given in Table 2.

Figure 5. Unbalance response functions at nodes 5 and 13 (disks 1 and 3). (a) Forward real (hff5,5); (b) forward
imaginary (hff5,5); (c) backward real (hbf5,5); (d) backward imaginary (hbf5,5); (e) forward real (hff13,5); (f) forward
imaginary (hff13,5); (g) backward real (hbf13,5); (h) backward imaginary (hbf13,5).· · · · , Two-axial groove; ——, four
tilting pad; —–—–, five tilting pad.



.-.   .-. 500

Figure 6. Unbalance responses at disk 3 (node 13) when an unbalance of 10 g-cm is attached to disk 1 (node
5). (a) Forward real; (b) forward imaginary; (c) backward real; (d) backward imaginary. · · · · , Two-axial groove;
——, four tilting pad; —–—–, five tilting pad.

The number of nodal points in this example is 13, so that two 52×52 complex dynamic
stiffness matrices need to be solved for unbalance response analysis in the direct method.
However, the number of bearings is just two, and the proposed method requires inversion
of two 4×4 matrix equations. Three types of bearings are considered in this example:

Figure 7. Numerical model 3: a two-spool aircraft engine [15].
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four-pad and five-pad tilting pad bearings, and a two-axial-groove bearing. The bearing
characteristics are given in Table 3. The stiffness and damping coefficients for the journal
bearings are obtained by linear interpolation of the data in the reference [17]. Since the
present example treats the identical rotor except bearings, the proposed method does not
demand any more computation of modal responses of the rotor, after just solving the first
case.

Typical unbalance response functions at disks 1 and 3 are illustrated in Figure 5. The
case of a two-axial groove bearing causes larger responses than the other cases. No
backward responses are observed in the case of the four-pad tilting pad bearing. In
Figure 6 is shown an unbalance response plot when an unbalance of 10 g-cm is assigned
to disk 1. This plot can easily be obtained by multiplying the unbalance vector by the
unbalance response functions. It can be found from this example that the proposed method
will be useful in the design of a rotor–bearing system that often requires repetitive
computation of responses with changing joint locations or properties.

4.3.   3
In this example an aircraft engine rotor system, shown in Figure 7, is considered. The

system has two substructural rotors, one of which (rotor 2) is supposed to be well balanced
and to rotate at a constant speed of 15 000 rpm (1570 rad/s), while the other (rotor 1)
contains some unbalance and the rotational speed varies from 100 to 2000 rad/s. The
unbalance response functions of substructural rotor 2 are computed by the direct method,
apart from the modal expressions, equations (10) and (13), because rotor 2 rotates at a
constant speed. In Figure 8 are shown the unbalance responses when two unbalances of

Figure 8. Unbalance responses at nodes 5 and 25 of numerical model 3. (a) Real of forward and backward
at node 5; (b) imaginary of forward and backward at node 5; (c) real of forward and backward at node 25; (d)
imaginary of forward and backward at node 25. ——, Forward; · · · · , backward.
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Figure 9. Orbital plots along the shaft axes. (a) 1300 rad/s; (b) 1000 rad/s; (c) 700 rad/s.

0·0036 kg cm each are assumed to be present at nodes 9 and 20 of a rotor, phased 180°
apart from each other. The orbital plots taken along the shaft axis, at three different
rotational speeds near a critical speed are, are illustrated in Figure 9. The center of the
orbit is the nodal point in the model.

5. CONCLUDING REMARKS

In the present paper an improved substructure synthesis method is proposed for the
unbalance response analysis of large, multi-span rotor–bearing systems. The proposed
method consists of two steps. First, the unbalance responses for substructural rotors are
obtained with an elementary undamped modal analysis of substructural rotors. Second,
an improved substructure synthesis is carried out to compute the unbalance response by
coupling the unbalance responses of the substructures. In the coupling procedure, an exact
matrix condensation is introduced which makes the system matrix small. The use of
complex co-ordinates in the formulation can decompose the skew-symmetric properties
into forward and backward properties, which is of use in dealing with unbalance response
analysis. A test example is illustrated and compared with the direct method to verify the
proposed method. The applicability of the proposed method is shown through two
practical examples.

The proposed method is very effective in consideration of the facts that most
rotor–bearing systems include only a few bearings and/or couplings and that a complicated
rotor system is mostly composed of multi-span rotors. The proposed method is of great
use for preliminary design, which often requires repetitive computation of responses with
changing bearing locations or properties. It is worthwhile mentioning that the proposed
method can easily be extended to general harmonic response analysis, but is confined only
to steady state responses.
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APPENDIX: DERIVATION OF UNBALANCE RESPONSE IN COMPLEX CO-ORDINATE
SYSTEMS FOR ROTOR–BEARING SYSTEMS

The finite elements equation of motion for a typical rotor–bearing system can be written
as

Mrq̈(t)+ {Cc(V)+VGr}q̇(t)+ {Kr +Kc(V)}q(t)= f(t), (A1)

where the superscripts r and c denote the rotor/shaft and connecting/supporting systems,
respectively. The global co-ordinate vector q(t) and the corresponding force vector f(t) can
be written as follows:

qT = {yT zT}, f T = {f T
y f T

z }. (A2)

Here y and z represent the y-directional and z-directional nodal co-ordinate vectors,
respectively, and fy and fz are the force vectors corresponding to y and z. The rotational
speed (V) dependent stiffness and damping matrices of the connecting/supporting system,
Kc(V) and Cc(V), respectively, are generally sparse and non-symmetric. The mass (or
inertia) matrix Mr and the stiffness matrix Kr are symmetric, while the gyroscopic matrix
is skew-symmetric. The system matrices are of the order 2N×2N, N being the dimension
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of the y or z co-ordinate vector (N=2×number of nodal points). The system matrices
are represented, in a partitioned form, by

Mr =$M0 0
M%, Gr =$ 0

−G
G
0%,

Cc =$Cyy

Czy

Cyz

Czz%, Kc =$Kyy

Kzy

Kyz

Kzz%, Kr =$K0 0
K%, (A3)

where the partitioned system matrices M, G and K are symmetric.
Introducing the complex displacement and force vectors defined by

p= y+jz, F= fy +jfz , (A4)

equation (A1) can be rewritten as

Mp̈−jVGṗ+Cfṗ+Cbp̄�+Kp+Kfp+Kbp̄=F, (A5)

where the subscripts f and b denote forward and backward, respectively, and the overbar
represents the complex conjugate. Here the connecting/supporting system matrices are
represented by

2Cf =Cyy +Czz −j(Cyz −Czy ), 2Cb =Cyy −Czz +j(Cyz +Czy ),

2Kf =Kyy +Kzz −j(Kyz −Kzy ), 2Kb =Kyy −Kzz +j(Kyz +Kzy ). (A6)

Provided that the external force is due only to unbalance force, the external force vector
can be represented by

F=WV2 ejVt, (A7)

where W is a complex unbalance distribution vector.
In general, the unbalance response is composed of two synchronous vibrations, forward

and backward: i.e.,

p= pf ejVt + p̄b e−jVt, (A8)

where pf and pb are the forward and backward whirl response vectors, respectively.
Then the unbalance response vectors can be obtained from

$pf

pb%=$Dff

Dbf

Dfb

Dbb%
−1

$WV2

0 %=$Hff

Hbf

Hfb

Hbb%$WV2

0 %=$Hff

Hbf%WV2, (A9)

where

Dff =−V2M+V2G+K+Kf +jVCf ,

Dbb =−V2M−V2G+K+K�f +jVC�f ,

Dfb =Kb +jVCb , Dbf =K�b +jVC�b . (A10)

Hff , Hbf , Hfb and Hbb in equation (A9) are the unbalance response functions, which are
similar to the frequency response functions.


